TWEAK/Fn14 Signaling Axis Mediates Skeletal Muscle Atrophy and Metabolic Dysfunction

نویسندگان

  • Shuichi Sato
  • Yuji Ogura
  • Ashok Kumar
چکیده

Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) through binding to its receptor fibroblast growth factor inducible 14 (Fn14) has been shown to regulate many cellular responses including proliferation, differentiation, apoptosis, inflammation, and fibrosis, under both physiological and pathological conditions. Emerging evidence suggests that TWEAK is also a major muscle wasting cytokine. TWEAK activates nuclear factor-κB signaling and proteolytic pathways such as ubiquitin-proteasome system, autophagy, and caspases to induce muscle proteolysis in cultured myotubes. Fn14 is dormant or expressed in minimal amounts in normal healthy muscle. However, specific atrophic conditions, such as denervation, immobilization, and starvation stimulate the expression of Fn14 leading to activation of TWEAK/Fn14 signaling and eventually skeletal muscle atrophy. TWEAK also causes slow- to fast-type fiber transition in skeletal muscle. Furthermore, recent studies suggest that TWEAK diminishes mitochondrial content and represses skeletal muscle oxidative phosphorylation capacity. TWEAK mediates these effects through affecting the expression of a number of genes and microRNAs. In this review article, we have discussed the recent advancements toward understanding the role and mechanisms of action of TWEAK/Fn14 signaling in skeletal muscle with particular reference to different models of atrophy and oxidative metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The TWEAK–Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice

Skeletal muscle atrophy occurs in a variety of clinical settings, including cachexia, disuse, and denervation. Inflammatory cytokines have been shown to be mediators of cancer cachexia; however, the role of cytokines in denervation- and immobilization-induced skeletal muscle loss remains unknown. In this study, we demonstrate that a single cytokine, TNF-like weak inducer of apoptosis (TWEAK), m...

متن کامل

The TWEAK-Fn14 System: Breaking the Silence of Cytokine-Induced Skeletal Muscle Wasting

The occurrence of skeletal muscle atrophy, a devastating complication of a large number of disease states and inactivity/disuse conditions, provides a never ending quest to identify novel targets for its therapy. Proinflammatory cytokines are considered the mediators of muscle wasting in chronic diseases; however, their role in disuse atrophy has just begun to be elucidated. An inflammatory cyt...

متن کامل

The effect of decreased physical activity on the expression of muscle atrophy-related genes after resistance, endurance and combined exercise training

Introduction and purpose: Decreased physical activity due to sciatic nerve ligation (SNL) cause muscle atrophy. The purpose of the present study was to investigate the effect of decreased physical activity in the form of spinal nerve ligation (SNL) on the expression of muscle atrophy-related genes (TWEAK and Fn14) after resistance, endurance and combined exercises. Materials and Methods: Thirty...

متن کامل

The effect of high-intensity exercise training on gene expression of tweak and Fn14 in EDL muscle of aged and adult mice

Muscle atrophy is one of the consequences of aging and sports activities may prevent it. The aim of this study was to evaluate the effect of high intensity interval training on gene expression of Tweak and Fn14 in EDL muscle of aged C57bl/6 mice. For this purpose, 28 male C57bl/6 mice aged (n=14) and adult (n=14) were assigned in two groups of training (n=7) and control (n=7). After one-week fa...

متن کامل

Regulation of Tissue Responses: The TWEAK/Fn14 Pathway and Other TNF/TNFR Superfamily Members That Activate Non-Canonical NFκB Signaling

The immune system mediates tissue responses under both physiological and pathological conditions. In addition to leukocyte subsets, non-hematopoietic tissue cell types actively contribute to shaping tissue responses, including the inflammatory, fibrogenic, and regenerative components. TWEAK and its receptor Fn14, members of the TNF/TNFR superfamily, have emerged as a prominent molecular axis re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014